A Strongly Normalising Curry-Howard Correspondence for IZF Set Theory

نویسنده

  • Alexandre Miquel
چکیده

We propose a method for realising the proofs of Intuitionistic Zermelo-Fraenkel set theory (IZF) by strongly normalising λ-terms. This method relies on the introduction of a Curry-style type theory extended with specific subtyping principles, which is then used as a low-level language to interpret IZF via a representation of sets as pointed graphs inspired by Aczel’s hyperset theory. As a consequence, we refine a classical result of Myhill and Friedman by showing how a strongly normalising λ-term that computes a function of type N → N can be extracted from the proof of its existence in IZF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalization of IZF with Replacement

IZF is a well investigated impredicative constructive version of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with Replacement, which we call IZFR, along with its intensional counterpart IZF − R. We define a typed lambda calculus λZ corresponding to proofs in IZF−R according to the Curry-Howard isomorphism principle. Using realizability for IZF−R, we show weak normalization o...

متن کامل

Strong Cut-Elimination Systems for Hudelmaier's Depth-Bounded Sequent Calculus for Implicational Logic

Inspired by the Curry-Howard correspondence, we study normalisation procedures in the depth-bounded intuitionistic sequent calculus of Hudelmaier (1988) for the implicational case, thus strengthening existing approaches to Cut-admissibility. We decorate proofs with proofterms and introduce various term-reduction systems representing proof transformations. In contrast to previous papers which ga...

متن کامل

A Normalizing Intuitionistic Set Theory with Inaccessible Sets

We propose a set theory strong enough to interpret powerful type theories underlying proof assistants such as LEGO and also possibly Coq, which at the same time enables program extraction from its constructive proofs. For this purpose, we axiomatize an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement and ω-many inaccessibles, which we call IZFRω. Our axioma...

متن کامل

Normalisation by Calculation

I outline a new proof of strong normalisation for system F, by direct calculation of the size of a normalisation tree. The system F itself is used as a formulism for representing these calculations, and any reasonably sensible model of the calculus can be used to verify that the correctness of the calculations. The method works for a variety of calculi, and seems reasonably general. Discussion ...

متن کامل

A New Type Assignment for Strongly Normalizable Terms

We consider an operator definable in the intuitionistic theory of monadic predicates and we axiomatize some of its properties in a definitional extension of that monadic logic. The axiomatization lends itself to a natural deduction formulation to which the Curry-Howard isomorphism can be applied. The resulting Church style type system has the property that an untyped term is typable if and only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003